Exercise 1.5.14

Isobars are lines of constant temperature. Show that isobars are perpendicular to any part of the boundary that is insulated.
[TYPO: Isobars are lines of constant pressure. Isotherms are lines of constant temperature.]

Solution

Isotherms are constant solutions (also known as level surfaces) to the heat equation.

$$
u(x, y, z, t)=u_{0}
$$

For fixed time, consider the differential of both sides.

$$
d u=0
$$

For a function with three spatial variables, the differential can be written like so.

$$
\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z=0
$$

Notice that the left side is a dot product of two vectors, ∇u and $\langle d x, d y, d z\rangle .\langle d x, d y, d z\rangle$ represents an arbitrary vector in the plane of constant temperature u_{0}.

$$
\nabla u \cdot\langle d x, d y, d z\rangle=0
$$

Along an insulated boundary that has a unit normal vector \boldsymbol{n}, the temperature satisfies

$$
\nabla u \cdot n=0
$$

Comparing the previous two equations, we conclude that \boldsymbol{n} lies in the plane of constant temperature. That is, any line of constant temperature will run perpendicular to an insulated boundary.

Figure 1: This is an illustration of an insulated one-dimensional rod. Any cross-section of the rod has a constant temperature, and all of the lines in this cross-section run perpendicular to the boundary (parallel to \mathbf{n}).

